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the Cr 8+ ions, which increases from NaCrS% to Rb CrS%, 
following the decreasing contrapolarizing action of the 
ions in the series Na+--Rb +. 

Table 3. Observed and calculated interionic spacings 
of the alkali selenochromites 

(All values in A.) 
NaCrS% K015 CrSe~ RbCrS% 

Obs. Calc. Obs. Calc. 0bs. Calc. 
2.92 2.89 3-27 3.24 - -  3.40 
2.55 2.55 2.46 2.55 - -  2.55 
3.70 - -  3 . 4 4  - -  3 . 4 3  - -  
3 . 7 0  3.82 3.44 3.82 3.43 3.82 
3-70 - -  3.44 - -  3.43 - -  

Spacing 
Alk.-Se 
Cr-So 
Cr-Cr ) within 
So-So ~ one 
Alk.-Alk.) layer 

The  mobility of the electrons of the selenium ions, 
which increases with the polarization, is manifested 
in the electric conductivity of the compounds. While 
NaCrS~ is still nearly a non-conductor, the specific 
resistance measured on samples under a pressure of 
1200 kg.cm. --° is 6.4 ohm-cm, for NaCrSe~ and 0.2 ohm- 

cm. for RbCrSe~. The conductivity of l~bCrS% is thus 
not much less than that  of microcrystalline graphite. 

In Table 3 the observed interionic spacings of the 
alkali selenochromites are compared with the values 
calculated from the Goldschmidt ionic radii. 
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A numerical method of indexing X-ray powder photographs without the use of single-crystal data 
is described. The method leads to a fair~ systematic treatment of tetragonal and hexagonal photo- 
graphs, and has also proved valuable in orthorhombic cases. 

The indexing of powder photographs of tetragonal and 
hexagonal materials, which cannot be obtained in 
suitable single crystals, is most frequently carried out 
by means of the graphical methods of Hull & Davey 
(1921), BjurstrSm (1931), and of Bunn (1945, p. 133). 
These and other related graphical methods are, how- 
ever, very time-consuming and are liable to fail in cases 
with a high proportion of missing reflexions. Some 
crystallographers might prefer to solve the problem 
numerically if practicable methods existed. The early 
numerical methods of l~unge (1917) and of Johnsen 
& Toeplitz (1918), however, are mainly of theoretical 
interest and will generally not work in practice. 

In the following, an account is given of a numerical 
method which has proved to be very successful in 
several practical tests carried out in Uppsala. I t  allows 
of a fairly systematic treatment of tetragonal and 

hexagonal cases. I t  has also been successful in ortho 
rhombic cases, although there the treatment will be 
less systematic. Earlier investigators may have applied 
similar methods to those of this paper, but a consistent 
account seems to be lacking. 

1. TETRAGONAL AND HEXAGONAL 
(RHOMBOHEDRAL) SYSTEMS 

1.1. G e n e r a l  r e l a t i o n s  

In the tetragonal and hexagonal (rhombohedral) 
systems the quadratic forms are 

X 2 [4(h 2 + k ~" + hk) 12 
and sing0=4- ~ 3~--~ + ~-i), 
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with well-known notations. We introduce the following 
notations: 

Tet ragona l  sys tem Hexagona l  sys tem 

A ---- A*/(4a 2) A~/(3a ~) 
C = A2/(4c 2) A2/(4c ~) 
M = (h 2 + k 2) (h 2 + k 2 + h/c) 

(' tetragonal number') (' hexagonal number ') 

and further q -- sin s 0.* All these quantities are positive. 
We can then write for both the tetragonal and hexagonal 

system q = A M  + CF, 

where for the tetragonal system M = 0 ,  1, 2, 4, 5, 8, etc., 
and for the hexagonal system M--0 ,  1, 3, 4, 7, 9, etc. 

I f  a number of q values are given, the problem will be 
to solve the system of equations 

qi=MiA-t- l~C (i--1, 2, 3, etc., qi given) 

with respect to A, C, M~ and l~, establishing the 
simplest possible solutions. 

Let us represent p = N A ÷ R C ,  where N and R 
are integers, by a number pair (p )=  (N, R), for which 
the following calculation rules are defined (cf. the 
calculation rules for complex numbers): 

(a) (N 1 , R1) = (N 2, R2), only i f N  1 = N  s and R 1 = Rs; 
(b) Z k i ( N i ,  R i ) - ~ ( Z k i N  i, Z k i R i ) ,  where/c i are in- 

tegers. 
I f  the representation is not unique, tha t  is, if 

p = N ' A + R ' C = N " A + R ' C ,  where N':~N",  we still 
write ( I ' ,  R') ¢ (N", R"). 

I t  is seen tha t  if Zki(Pi) = (0, 0), then 

Z k  i N  i =  0 and Z k  i R  i =0 .  

Now let q be represented by the number pair 

( q ) = ( i ,  lS). 

In  the following we consider only lines with fairly small 
q values, i.e. lines with fairly small values of M and l ~. 
I t  is also assumed tha t  A : C is not a ratio of small or 
relatively small integers. Then the representation 
(q) = (M, 1 s) is unique. (For ifq = M1A + l~C = M~A + l~C, 
then A"  C=(I~-I~) " (MI-M~) . )  

n 
Also ff ~.,kiqi=O (ki=smal l  positive or "negative 

integers; n small, generally _<_4), then ~ki(qi)= (0, 0). 
Tb n 

(If this is not valid, then A • C= (-~,k~l~)" (Zk~M~), 
which is in conflict with the assumption.) I f  then 

T~ 
relations of the type ~kiqi  =0 have been found by the 
method explained in § 1.3, Mi and l~ can be calculated 
from the corresponding equations 

(Zk~M~, Zlc~l~)=(O, 0). 

• I f  one prefers ~ func t ion  which is independen~ of  A, o n e  

m a y  replace q in all the  following expressions by  
Q = 4 (sin 2 0)/h% 

The  mean ing  of the  cons tan ts  A and  C will then change to 
A = 1/a ~ ( te t ragonal  system),  A=4/(3a ~) (hexagonal  system),  
and  C = 1/c ~. 

Linear relation between two q values 

Of special interest are equations of the type  

kl ql = ks qs 
and of the type  

kl ql ÷ ke q9 + ka qz = 0. 

We first consider the equation kiq 1 =keq s, where k 1 
and k s possess no common factor and where k 1 and k s 
are not both squares. 

Then (k lM x, kl/~)=(/csM~, ]cgl~), from which 
M 1 • Ic e = M 2 " k 1 and k 112 = k 2 l~. 

F r o m  this it follows tha t  ll=12=O. For assume 
ll 4 0 which implies 124 0, then 12 must contain all the 
prime factors of k~, and 11 must  contain all the prime 
factors of k s. I f  then k~, say, is not a square, it must  
contain a prime factor p to an odd.power. In this case 
l~ must  contain the factor p, which will then enter to 
an even power in the right-hand member of k I 12 = k 2 l~, 
while the left-hand member contains p to an odd power. 
Consequently, the assumption 114 0. leads to a paradox. 

We thus find tha t  (ql) = (M1,0) and (qs) = (Ms, 0) and 
further M 1 : kg. = Ms : kl = m12 (mls = an integer > 1 be- 
cause k 1 and k 2 have no common factor). 

Hence A -  ql _ 1 qA where ql and k s are known. 
M1 mle k 2' 

I f  mls > 1 one can often find ml~ or factors in ml~ by 
the combination of several equations. As an example, 
we consider the following equations: 

(1) ql=3q~, (2) ql=4q3. 

Then 
(1) gives (ql)= (3M9, 0) and (2) gives (ql)= (4M 8, 4la2), 

1 ql. Here where evidently 1 a = 0. (1) also gives A - 
m12 3 

mls=Me.  But  as (3M2, 0 )=  (4M a, 0), it follows that  
3M9.--3mls---4M a, i.e. mls must  contain the factor 4. 
As a consequence A =ql/(12m), where m = a n  integer, 
possibly 1. 

The ratio k~: ] Q = M I : M  s generally determines 
whether the system is tetragonal or hexagonal. The 
occurrence of the simplest ratios in these two systems 
is tabulated in Table 1. 

Table 1. Occurrence of ratio MI : M~ (expressed in 
numbers < 10) without a common factor in tetragonal 
( T) and hexagonal (H) systems. The ratios denoted by 0 
do not occur 

2 3 4 5 6 7 8 9 

1 T H T H  T 0 H T T H  
2 0 - -  T - -  0 - -  T 
3 H 0 - -  H 0 - -  
4 T - -  H - -  T H  
5 0 0 T T 
6 0 - -  - -  
7 0 H 
8 T 

Linear relation between three q values 

The equation klq I + k2q 2 + Icaq a = 0 gives 

( k l i  1 + k s i 2 + k a i  a, kll~+ksl~+kal~)=(O, 0). 
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The  e q u a t i o n  2 2 ~ k111+ k212 A- ]ca la = 0 has  v e r y  few solu- 
t ions  which  are smal l  numbers .  The  e q u a t i o n  

+ = 0 

for example ,  has  for 0 < l i  < 10 on ly  solu t ions  of  t he  
f o r m / 1  = 12 = n ,  1 a = 2n. Solut ions  to  equa t ions  of  th i s  
k i n d  are g iven  in  Tab le  2 for 

] / ~ ] < 1 0  a n d  [kxl=<6, 1k2]=<3,  I k a l < 3 .  

The  solut ion/1  = l~ = l a = 0 is common  to  all  equa t ions  
of th i s  t ype .  This  so lu t ion  implies  t h a t  

q~ : q~. : q 3 - - - - M 1  : M ~  : M 3 . 

Hence  th i s  so lu t ion  is exc luded  excep t  w h e n  ql ,  q~ and  
qa s t a n d  in  such a r a t i o n a l  p ropor t ion .  I f  

ql : q2 : q 3 -  k l  : k2  : ]ca, 

where  ki = i n t e g e r s  w i t h o u t  a c o m m o n  fac tor  a n d  one 
of  t h e  k i is non -quadra t i c ,  t h e n  A =ql / (mkl ) ,  where  m 
is a n  in teger .  

:By combin ing  several  equa t ions  k 1 l~ + k 2 l~ + k 3 la 2 = 0 
4 

wi th  equa t ions  k~q~=k¢qj or ~ k ~ q i = O  i t  is possible to  
ca lcula te  l~ for a n u m b e r  of  l ines (see § 1.4, example  2). 
I n  th i s  w a y  one ob ta ins  

A = ( l~q l - l~q~) ln~= (l~ql-l~qa)/n~3= (l~q~-l~q,)/n~, 

a n d  so on, where  n~.,  n13, nla are integers .  I f  li a n d  l~ 
h a v e  the  c o m m o n  fac tor  k, t h e n  ni~ con ta ins  t h e  fac tor  
k% (In  these  express ions  i t  is a s s u m e d  t h a t  

l~q i - l~q~#O.)  
3 

B y  combin ing  severM equa t ions  ~,lc~M~=O with ,  
4 

possibly ,  equa t ions  k i M  ~ = ]c~M~ or ~ ] c i M  ~-- 0, one also 
ob ta ins  possible solut ions  in  M.  I n  th i s  w a y  one can 
ob t a in  possible va lues  for m~ = M~ l ~ -  M~ l~. 

1 . 2 .  D e t e r m i n a t i o n  o f  o n e  c o n s t a n t  w h e n  t h e  
o t h e r  is k n o w n  

The  t r e a t m e n t  of th i s  p rob lem does no t  i m p l y  a n y  new 
fea tures ,  b u t  is br ief ly  r e l a t ed  here  for t he  sake  of com- 
pleteness .  

I f  (q )=  (M, 1 ~) t h e n  ( q - A M ) =  (0, 12). Thus ,  i f  q is 
a ref lexion w i th  u n k n o w n  indices,  one of  t he  n u m b e r s  
q - M ~ A  ( > 0 ;  M ~ = 0 ,  1, 2, 4, 5, etc. in  the  t e t r a g o n a l  
sy s t em a n d  = 0, 1, 3, etc,  in  the  h e x a g o n a l  sys tem)  will  
equa l  C1 ~. 

I f  A is g iven  a n d  one knows  w h e t h e r  the  s y s t e m  is 
t e t r a g o n a l  or hexagona l ,  one selects t he  four  or five 
lowest  q va lues  for which  ( q ) # ( M ,  0) a n d  forms 
q i - A M ¢  > 0, where  M j  are e i ther  t e t r a g o n a l  or hexa-  
gona l  numbers .  I f  the  sy s t em is u n k n o w n ,  bo th  te t ra -  
gona l  a n d  hexagona l  n u m b e r s  are g iven  to  M j .  I f  
among  the  reflexions in  ques t ion  (ql < q2 < qa < q4 < q5) 
two,  for ins tance  qx.and qa, possess the  same l index,  
t h e n  

q l - M I A = q a - M a A = k  ~, where  kc=C12. 

Table  2. Solutions 0 < 1 i < 10 of the equation 

Coefficients solutions 
¢_.._ A • ~ & ,  

kl k2 ks 12 la 

1 --1 --1 b,b {5 5 4 3 
3 4 

2 1 --1 b ~2n n 3n 
(4 7 9 

2 --1 --1 a ~5 7 1 
(5 1 7 

2 2 -- 1 - -  n n 2n 
2 -- 2 -- 1 b ~ 3n n 4n 

/ 9 7 8 
3 1 - 1  b ~n n 2n 

(4 1 7 
3 --2 --1 a 3 1 5 

3 2 - - 2  b 5 7 

3 - -  3 1 b n 2n 3n 
3 --3 2 b ~1 5 6 

i5 7 6 
4 1 --1 b,c 2 3 5 

5 8 6 
4 --I --i c,c 5 6 8 
4 2 --I c I 4 6 
4 -- 2 1 - -  n 2n 2n 
4 -- 2 -- 1 c 3n 4n 2n 
4 3 -- 1 c n 2n 4n 
4 --3 --1 a, c 7 8 2 
4 --3 2 __ ~n 2n 2n 

/5 6 2 
4 3 --3 b ~3n 2n 4n 

(fi 1 7 

5 1 --1 b 2 7 
1 9 

5 - - 1  - - 1  _ _  ~n  n 2n 
in 2n n 

5 2 --2 b 4 3 7 
2n 3n n 

5 -- 2 -- 2 - -  2n n 3n 

I n n 2n 
- -  n 3n 4n 5 3 --2 15 1 8 

5 - - 3  - - 2  a 9 1 

5 3 --3 b ~3n n 4n 
/3 7 8 

6 1 --1 b 5 7 

6 --2 --1 __ In n 2n 
/3 5 2 

6 3 - 1  _ ~n n 3n 
( l  5 9 
l~ 2n 3n 

6 3 - - 2  - -  2 9 

(Equation k 1 l~ + k~ l~ + k 8 l~ = 0 is identical with 
2 2 2 _ _  - k111 - k212 - ks 13 - 0.)  

General solution: 11 - 12 = l a = 0. 
Type solutions: (a) ~ + k 2 + k a-- 0; /1 = 12 = l s . 

(b) k~=--k~; l~=l~, l~=O. 
(c) k~=--4k~; 21~=lj, l~=O. 

Type Special 
solutions 

(see above) 11 

As kc u sua l ly  occurs in  two or more  places  a m o n g  
q i - M ¢ A ,  i t  is possible to  f ind k~. A m o n g  the  n u m b e r s  
qi - Ms  A for i = 2, 4 or 5 (in t he  g iven  example) ,  one t h e n  
looks for 4kc, 9kc, etc., a n d  poss ib ly  also for k d 4  , 
9kd4,  etc. or kd9  , 4kd9 , etc. I n  t h e  case where  all  t h e  
first  reflexions h a v e  different  indices,  l, one of  t h e  
n u m b e r s  q I - M ¢ A  will  equal  k c. One t h e n  t e s t s  these  
n u m b e r s  in  t u r n  in  t he  same w a y  as above.  
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I f  C is given, A can be found in an analogous way. 
A larger number of lines ought to be considered in this 
case. 

1.3. Format ion  o f  the expressions Ykiq i = 0 

I f  the smallest q values observed are 

q~ <q2<qa<q~<qs. . .  <qn, 

one forms among these all the sums q~+q~< R (R, for 
example, =q~0, i<=j), according to the scheme given 
below: 

qt q~ qa q~ q~ qe 

q~ 

q2 
qa 

q~ 

q~ 

qe(1 

q7 

2qx (4) [ _ ~  q4--q~(4) qs--q~(3) qe--q~ 

ql+q2(3) 2q~ l ~  qs--q~ q6--q~ 

ql+qa(1) q2+qa 2qa l ~  qs--qa qe - -q ,  

q l+qa  q~+q4(2) qa+qa 2q4 [ ~  

ql+qs(2) q~+q5 qa+q5 qa+q5 2q6 ] 

ql + q6 q2 + q6 qa + qe ~ ~ ~ ~ ~ " ~ 

q~ + q7 q2 + q~ ~ ~ ~ 

In  this scheme one looks for sums or single q values 
which are equal within narrow limits of error. (One 
notices tha t  values of approximately the same magni- 
tude occur near lines which are parallel to the dotted 
line in the scheme.) The limits of error are discussed in 
§ 3; in all cases hitherto t reated we have put  qi + qJ = qs 
if qi + qJ = qs + A, where [ A I < 0.0005. I f  in this way 
one has found that  the numbers indicated by (1) in the 
scheme are equal, one gets the equation ql + q3 = q6. In 
the same way the numbers indicated by (2) give 
ql + q5 = q2 + q4. Consequently, one obtains equations of 
the types qi + q~ = qs and  qi + qJ = qs + q+.. From these 
equations one obtains separate expressions in 19 and M 
from which the indices can be calculated. I t  is con- 
venient first t o  carry out eliminations within the 

3 
system so tha t  equations of the types ~ k i q i = O  (one 
/c i > 1) or ]ciq i = ]c~qj are obtained. 

I f  the sums do not give a sufficient number of 
equations, one can also form differences qi -q j>-2ql .  
I t  is of no use to look for equalities among the differ- 
ences only. They repeat relations obtained earlier from 
the sums; for ff q~ - q~ = q s -  q~, then qi q- q~. = qs q- qJ. 
Equalities between differences and sums, however, give 
the desired equations. The equalities (3) in the scheme 
give q5 = 2ql + qg., whereas (4) give q4 = 3ql. In  forming 
the equations one excludes equations which are not 
independent. I t  is easily seen tha t  one of the equations 
(2), (3), (4) is superfluous. 

Another way of directly obtaining equations of the 
3 

types ~ k i q i = O  (one k i > l )  and kiqi=Icjqj without 
eliminations is to form sums (and differences if neces- 
sary) of the numbers ql, 2ql, qg., 2q~, q3, 2qa and so on. 
These numbers are arranged in increasing order and the 
summations are carried out in the same way as in the 
scheme above. (An example of this procedure is given 
in § 1.5, example 2.) 

1.4. Performance o f  the indexing 

I t  is supposed tha t  the q values of all lines with small 
angles of deviation have been determined with the 
greatest possible accuracy (see § 3). I f  one has found 
tha t  the system is non-cubic, equations are formed 
according to § 1.3, after which solutions in M and 12 are 
determined as in § 1.1. I f  only A or m A  is obtained 
in this way, C is determined according to § 1.2. The 
method of § 1.2 can also be used for lines of higher 
angles as a check on the values of A and C already 
obtained. I f A  : C is equal or nearly equal to a quotient 
between small integers, certain equations cannot be 
treated by representation by number pairs. In  this 
case one has to look for solutions of each equation 
separately; this leads to several alternatives. 

Finally, one can t ry  to determine one constant by 
the method used for the orthorhombic case (see § 2). 

1.S. Applications 

The above method of indexing powder photographs of 
tetragonal and hexagonal crystals has been successfully 
tried on several cases where the author did not kno4¢ 
anything about symmetry  or dimensions beforehand. 
One such case was the second of the two examples 
given below, both of which have been taken from 
investigations by Kiessling (1947). 

Example 1. W2B; Cr K a  1 radiation 

The nine lowest sin ~ 0 values are: 

ql---- 0-0847, q4 = 0-2698, q7 = 0.4025, 

q~ ---- 0.1694, q5=0"3179, qs--0"4229, 

qa = 0.2334, qe = 0.3384, q9 ---- 0.5724. 

Sums qi + qJ < q9 are formed according to § 1.3: 

ql 0"0847 
q~ 0"1694(1) 
q3 0"2334 
q4 0"2698 
q5 0"3179(2) 
qe 0"3384(3) 
q7 0.4025(4) 
qs 0.4229(5) 
q~ 0.5724(6) 

q~ q~ q3 q4 

0.1694(1) I 
0.2541 0.3388(3) ] ~  
0.3181 (2) 0.4028 
0.3545 0.4392 0.5032 
0.4026(4) 0.4873 0.5513 
0.4231 (5) 0.5078 0.5718 
0.4872 0.5719(6) 
0.5076 

0.4668 [ _ _  

The following independent equations are obtained: 

(1) 2ql =q~, 

(2) ql +qa=qs, 

which give 

(7) qd=4ql, 

(8) qv = q3 + 2ql, 

0.5396 

(9) qs = 5ql, 

(10) qo=qa+4ql.  

From (1), (2), (7), (8), (9) and (10) one obtains (q2), (qs), 
(qe), (qv), (qs) and (q9) directly expressed in M 1, l~, M a 
and l~. 

The equations (1), (3) and (9) each show that '  the 
system is tetragonal, and that ,  among others, l l=0 .  
Hence, A -- 0.0847/M 1 . 

(3) 2q2 = q6, (5) ql + q6 = qs, 

(4) ql+qs=q7, (6) q2+q7=q9, 
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M a < 3M~ because qa < 3qt. Moreover, M a#  2Mx, 
otherwise equation (2) gives M s = 3 M t  which is im- 
possible in the tetragonal system. In the same way one 
obtains M a # MI,  M~/2, and 5M1/2. We first t ry  Mt  _< 2 
according to the method in § 1.2. In  this case the above 
gives M s = 0  and Cl~= 0.2334. I t  is then only necessary 
to form q~-AM¢ as the rest of the lines are already 
expressed in M~ and la ~. 

For  M x = 1, Ax =0-0847: 

qa=0.2698, qa-A~=0.1851,  q~-2A~=0.1005. 

Neither of these numbers is related in a simple way to 

For  M~=2, AI=2A~: 

q~-A~=0.2275,  qa-5Ae=O.0581=Cl~/4, 

whence M a = 5 and ~ ~ = la = 41~. For  la 1, which gives I s = 2, 
all lines will be indexed according to equations (1), (2), 
(7), (8), (9) and (10) in the following way: 

(ql) =(2,  0), (q,)=(5, 1), (q~)=(4, 4), 

(q~) = (4, 0), (qs) = (2, 4), (q~)= (10, 0), 
(qa) = (0, 4), (q6) = (8, 0), (q~) = (8, 4). 

Example 2. &phase in the system Mo-B; Cr Ka  1 
radiation 

The first eleven sin e 0 values are: 

q~=0-0732, qa=0-2502, qv=0.4361, qt0=0"6165, 

q~ = 0.1406, q~ = 0.2910, qs =0"5050, qn = 0.6561, 
qa=0"1771, q6=0"3595, q9=0"5441. 

Here the sums < qs of the numbers qt, q~, 2ql , qa, 
qa, 2q~, q~, 2qs and q6 are formed: 

qt 0"0732 
q~ 0-1406 

2qt 0.1464 
qs 0.1771 
q~ 0.2502(1) 

2q~. 0.2812 
q~ 0.2910 

2qa 0.35.42 (2) 
q6 0.3595 

q~ qz 2q~ qs q~ 

0.1464 [ 
0.2138 0.2812 [ 
0.2196 0.2870 0.2928[ 
0.2503(1) 0.3177 0.323~ 
0-3234 0"3908 0"3966 0"4273 0"5004(3) 
0.3544(2) 0.4218 0-4276 0.4583 
0.3642 0-4316 0.4374 0.4681 
0.4271 0.4948 0.5006 
0.4327 o.5ool (3) 0.5059 

The following independent equations are obtained: 

(1) q4-qa -q l=O,  (2) 2 q s - 2 q ~ - q l = O  , 
(3) 2q4 - q6 - q2 = 0. 

From Table 2 we find tha t  these equations have the 
following solutions in l in common: 

(a) 11 = l~ = la = 14 = 16 = 0, which requires 

ql : q~ : qs : q4 : q6 = M1 : Me : Ms : M4 : M6. 
No acceptable ratios of this kind exist, whence this 
solution is excluded. 

(b) /1=0, 12=ls=14=16, whence AM~=0.0732. Ac- 
cording to (2) M 1 must be divisible by 2. A s tudy of 
possible M e values in (1), (2) and (3) excludes M 1 = 2. 
Hence, Mt  must  be = 4, 8, 10, etc. Though the low-angle 
lines can thus be indexed, contradictions occur for lines 

with larger angles. Hence, the only remaining possi- 
bility will be: 

(c) 11=4, l~=l ,  l a=3,  14=5, 16=7. Here M 1 can 
be=0 ,  4, 8, 10, etc. I f  M r = 0  , then Me= M s =  M4= M e. 
Further  ql = 16C = (q6 - q~)/3 = 0"07296, qn/9 = 0-0729. 
We use the accurate value C=qu/144 and calculate 
q~-Cl~ for i=6,  7, 8, etc. (q5=64C). In  this way 
the system is found to be tetragonal and the indexing 
of all lines is possible. The value of A is found to be 
0.1360. A great number of reflexions are missing, but  
practically all of them correspond to the absences 
required by the space group D~-I4/amd.  The large 
percentage of absences and the high axial ratio 
(c/a = 5-465) would have rendered an indexing of this 
photograph by means of graphical methods very diffi- 
cult. 

2. O R T H O R H O M B I C  SYSTEM 
2.1. General relations 

The indexing of powder photographs of orthorhombic 
crystals requires a great number of sin e 0 values. 

The quadratic form of the orthorhombic system is 

_ ~ e Aah~i, where qi = sine Oi. qi - A thli -4- A~h~ + 
I f  two of the constants (A 1 and Ae) are known, the 

third constant (As) can be determined immediately 
according to the method given in § 1.2. 

I f  only one of the constants (e.g. A1) is known, the 
problem is brought back to the indexing of 

ri =A~h~TAsh~i .  
This irldexing is carried out in the following way. 

2 2 I f  qq = A 1 + Auhei + Ashsi 
2 2 qi2 = A14 4. Aehgi 4- Ashsi 

° ° . ° . . . . . . . . . . . . . . . . ° . . ° ° ° .  

qi~ = AI n e + A 2 h~i + Ash~i, 
then 

2 2 
q i t - -  A1 = q i~  - 4A1 . . . . .  qin-- A1 h e -  A ~ hei + Ashai. 
Consequently, one forms all numbers of the type  

q i - A 1  h~ > 0 for a great number ofq values. Among the 
numbers qi-A~he>O, where h also can equal 0, all 
numbers occurring twice or several times are picked 
out. These numbers are denoted by  rl ,  rg, r a , etc. Most 
of the numbers ri are usually of the form A e heie + As nat.- 9. 

Index combinations which are not to be found among 
the given q values may occur here. 

2 e I f  ri=A~he~+Aahai , then r i is represented by the 
number pair (ri)= (h~i, h~i). Under the same assump- 
tions as for the tetragonal and hexagonal systems we 
obtain tha t  ff r i l  + r~ = r~, then 

(h~ , ,  h~,,) + (h~, , h~ 2) = (h~, h~). 
Hence (we assume h < 10): 
(a) I f  h~s and h~s # 25, then one (r~) is equal to (h~, 0) 

and the other to (0, ha~). 
(b) I f  h~ = 25 and h~ # 25, then one (ri) is equal to 

(h~i, 0), where h~i = 9, 16 or 25. 
(c) I f  h~ = hae~ = 25, then one (ri) is equal to (25, 0), 

(16, 9) or (16, 16). 
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(If  in the last  case (rq) = (16, 16), then ril "r~= 16 "25.) 
We thus  determine A ~ and  A a with the aid of equations 
of the type  ri, +r i~=rs .  After finding A e, A s is deter- 
mined according to § 1.2. In  doing this one mus t  (as 
when t reat ing the equat ion ri~ + ri~ = %) pay  regard to 
the fact tha t  not all r 's  are always of the form 

r =  A2h~ + A zh~. 

The de termina t ion  of one or several of the constants  
A ab initio is carried out in the following way: 

I f  ql < q~ < qa < -.. < q~ (say tha t  n is about  40) ~ll 
expressions qi+q~=q~ (s<__n and i, say, __<10) are 
formed according to § 1-3. I t  is ext remely  probable 
tha t  qi's of the type  q = A h  2 will occur in a great  number  
of these equations.  In  all cases hi therto t reated the 
qi value which has been most f requent  in such equat ions 
has been of this  type.  The expressions qi+q~=q~ are 
formed using a narrow margin  for the errors of measure- 
ment .  

One also forms differences of the type 0 < ( q s -  q~) < ql.  
I f  A < ql, numbers  of the type A ~ ( h ~ s - h ~ ) , A 2 ( h ~ s - h ~ ) ,  
Aa(h~-h~a~) will be found among the most f requent  
differences. The format ion of differences > qx is generally 
unnecessary,  as also the formation of differences be- 
tween all given q values. I t  is convenient to plot the 
differences in a d iagram (see the example  below). 

I f  q0 is one of the numbers  which is most  f requent  as 
te rm qi or qj in the  expressions qi + q~ = qs, one tests if  
q°(n~'-12)/m ~" (where m, n and l ~re integers) is repre- 
sented among the most  f requent  differences. I f  this  is 
the case, one puts  q°/m~ = A~. With  the value of A1 thus  
obtained one tries to bring back the problem to the 
indexing of A 2 h ~ + A a h ~ i  in the manner  given before. 
I f  both A~ and  A~. are obtained in this way, A 3 is deter- 
mined according to § 1-2. 

I f  i t  is impossible to find any  relation among the most  
f requent  sums and differences one tests A 1 - q i o A ~ = q° / 4, 
A ~ = q ° / 9  and so on. 

2.2. Application 
Several powder photographs of or thorhombic crystals,  
which were unknown to the author,  have been indexed 
in this  way. One typica l  example  is given here. 

E x a m p l e  3. K N O  a, Cr Ka~ radiation 

The forty lowest observed sin ~ 0 values are: 

q~ =0"0923, qn=0"2264,  q~=0.3462 ,  

q~ =0.0943,  q12=0"2339, q~=0 .3481 ,  

qa =0.1271,  q~a=0"2411, q2a=0"3513, 

qa =0.1392,  q~=0 .2496 ,  qea=0"3689, 

q~ =0-1427, q1~=0.2678, q2~=0"3766, 

% =0-1720, q16=0"2731, q~.6=0"4177, 

q7 =0.1789,  q~7=0"2818, q~.v=0"4223, 

qs =0.1853, qls=0-3060,  q~s=0"4287, 

% =0-1877, q~9=0"3122, q29=0"4500, 

qlo=0-1898, q20=0"3263, %0=0"4600, 

qa~ = 0"4663, 

qa~. = 0"4963, 

q3a = 0.5239, 

qa4 = 0" 5427, 

q35 = 0.5551, 

qa6 = 0.5624, 

qa7 = 0.5693, 

qas = 0-5748, 

%0=0"6151, 

qa0 = 0"6699. 
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We form all expressions of the form q~ +qj  =qs for 
i <  10, s__<40" 

q~+q~o=qn,  q2+qn=q~5 ,  q4+q5 =q17, q7 +q25=q35, 

q~ + q ~  = q20, % + q7 = q~s, % + q u  = q2a, qs + q2~ = q~n, 

ql + q~o = qaa, qa + qs = q~o, q~ + q12 = q2~, % + q~a = q2s, 

q2 + q4 = ql~., qa + ql,t = q25, q6 + q';' = q2a, qlO + qlS = q3u- 

q2 + q7 = q16, q3 + q24 = q32, q7 + qlo = q24, 

q2 + q9 = qn ,  q3 + q3a = q40, q7 + qla = qes, 

The frequencies of q~, q~ . . . .  ql0, in these expressions 
a r e  

q1(3), q~.(4), q3(5), q4(2), %(3), %(1), 

q7(6), qs(2), %(2), q10(3). 

The numbers  q7(6), qa(5) and q2(4) are evident ly  of 
special interest.  

[li 
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Fig. 1. Numerical interpretation of orthorhombic powder 
photograph. 

In  Fig. 1 the occurrence of values q s - q j  (<q l )  for 
s < 20 is indicated by  vert ical  lines o.n the abscissa. I f  
two values coincide, the line is given double the height.  
The dis t r ibut ion of these values is f u r t h e r  shown by  
the areas enclosed by  dotted lines, the height  of which 
is proport ional  to ~he number  of differences q s - q j  
fall ing wi thin  an interval  of 5 × 10 -a on the abscissa. 

F rom the diagram we see tha t  no less t han  five 
differences are s i tuated in the immedia te  vic ini ty  of 
q7/4 = 0.0447. The numbers  q2 and qa do not show any  
simple relations with the differences. We put  q7/4 = A 1 
and form q j - A l h 2 > O  for all given q values. (If no 
result  had  been obtained in this  way, we would have 
tested A 1 = q7/16" or possibly A 1 =q7/36.) 

F rom the numbers  q j - A l h 2 >  0 (where h also can be 
zero) we obtain the following r values (the numer ica l  

* When testing A1----q~/16 it is necessary to form only the 
new numbers qj--A 1, q~--9At, q~--25A1, etc. The rest of the 
numbers have already been formed for AI = q7/4. 
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values 
giving 

given being means  of the different numbers  
pract ical ly  the same r value): 

r t = 0.0475 = q t -  At = q l t -  4At = q ~ -  9A1, 

r~. = 0.0942 = q~ = q4 - A 1 = q16 - -  4 A t  = qa~- 9At*, 

r a = 0.1272 = qa = q6 - At = q t s -  4A~, 

r 4 =0.1404 =qs  - A t  = q a 4 - 9 A t ,  

r~ = 0-1428 = q~ = q9 - A t ,  

r s = 0.1670 = q~t - 4At = qa7 - 9A1, 

r7 = 0.1722 = q6 = q~3- 4At = qa6 - 9At,  

r s =0.1895 =ql0 = q t ~ - A t ,  

r~ = 0.2497 = qt~ = q~s-  4At,  

rl0 =0.2676 =ql~ = q l 9 - A t  = q a 0 -  9A1, 

rtt = 0.2815 = qt7 = qe0- At  = q80 - 4At,  

rt~ = 0.3063 = qls = q2a- At ,  

r ta=0"3764 = q ~  = q a ~ -  4At,  

rt4=0"3838 = q ~ s - A ~ = q a s - 4 A 1 ,  

rts = 0.4220 = q ~ 7 - q a t - A t ,  

rt6 = 0.5242 = qaa = qa~ - At .  

All equations of the type  r i t + r i = r  s a r e  formed 
(A < 0.OO05)" 

(1) ra+r4=rto, (3) r 4 + r n = r l s ,  (5) ra+rt4=rt6 , 

(2) r a + r  9 =rt3,  (4) r~ + r  9 = rts. 

We consider the equations (1) and (2): 
Both (rio) and (rta) cannot be (25, 25). Then according 

to (1) and (2) one of the number  pairs (ra), (r4) or (rg) 
mus t  be equal  to (h~i, 0) (or to (0, h~i), which is the 
same). Fur ther ,  r 4 : r 9 = 9 : 16 and, consequently,  
1 6 h ~ =  9h~9 and 2 2 16ha4=9hag. We assume (r4)=(9 , 0) 
requiring (rg)= (16, 0), whence, according to (1) and (2), 
(ra) = (0, h~a ). Then 

A~.=rg/16=O.O156 and Aa=r3/h]a=O.1272/h]a. 

According to § 1.2 we form r i - A ~ h  ~ > 0 for i = 1, 2, 5, 
6, 7 and 8, from which Aa = ra/4 = 0.0318 and (r~) = (1, 1), 
(r~)=(4, 1), (ra)=(0, 4), (r~)=(1, 4), (rv)=(9, 1) and 
(r8) = (4, 4). I t  is not  possible to obtain the indices of r 6 
in this  connexion. 

F rom (1), (2), (4) and  (3) we now obtain  direct ly 

(r~0)=(9, 4), (rta)=(16, 4), (rt5)=(25 , 1) 

and  (rtt) = (16, 1). 

Equa t ion  (5), on the  other hand,  leads to a paradox. 
The constants obtained do not  permit  the indexing of 
rt~ and rt4, bu t  i t  is too much  to assume tha t  all r~ are 
of the  form A~h~i + Aah~,  

We further  find tha t  (rl6) -- (1, 16). 

Wi th  the aid of the indices of ri (except r6, r12 and  
r14 ) and the eonnexions between qj and r i (see above) we 
obta in  directly the  indices of all lines except qv, qta, 
q21, q~,  q~4, q26, q86 and qag. I t  is, however, possible to 
index these lines with the constants  now obtained. In  
this  way the whole photograph has been indexed. 

Further remarks. Fig. 1 shows accumulat ions  of num- 
bers round the values A~=0.0156,  (4 -1 )A~=0 .0468 ,  
4A9=0.0624 and (9 -4 )A~=0 .0780 .  Moreover, num-  
ber q8, which occurs in five expressions of the  type  
qi+qj=qs ,  is equal to 4A 3. (q2, which occurs four 
t imes in the corresponding expression, is equal  to 
4A~.+A3.) 

A calculation of A a according ~o § 1-2 and  wi th  the  
assumptions A t  = qT/n 2 and A~ = qa/m ~, would have led 
to a result  more rapid ly  t h a n  the method  described 
above, where q i - A 1  hg was formed. One would then  
have to test  the al ternat ives At=qT/16 , A~=q3/16 and 
At=qT/16,  A2=q3/9. The first a l ternat ive  makes  
possible the indexing of all lines wi th  the indices 
(2hti, 2h~, hai) which gives A 1 = q~/4 and A~ = qa/4. 

3. A C C U R A C Y  O F  M E A S U R E M E N T S  

An essential condition for the success of the  indexing 
method  here described is a high accuracy of the  
observed q values. I f  the q's or sums of q's which are to 
be equated are not  sufficiently well known, the  risk of 
obtaining 'false equat ions '  is obvious, especially ff the  
cell dimensions are large. Only a single false equat ion 
has occurred in all the  cases invest igated by  the  
author,  ma in ly  owing to the high accuracy of the  
exper imenta l  material .  False equations will p robably  
be easy to rule out by  internal  inconsistency. 

The author used exclusively focusing cameras of the  
Seemann-Bohl in  type,  modified by  PhragmSn (West- 
gren, 1931) and  later  by  H£gg. Some geometrical  
constants of these cameras are given by  Hi~gg & 
RegnstrSm (1944). The measurement  of the film was 
carried out according to the method described b y  tti~gg 
(1947), in which an automat ic  correction for film 
shrinkage is obtained. Wi th  suitable preparat ions the  
error of a single measurement  will never  exceed 
+ 0.1 mm.  and in most  cases will not  exceed _+ 0.07 mm.  
The effect of an  error of 0.1 mm.  on the value of q 
( = sin 2 0) in different ranges of the three cameras (A, B 
and  C) used is given in Table 3. 

Table 3. Error in q (= sin ~ O) caused by an error in 
line position of O. 1 mm. 

Camera q Error in q 
A 0"065-0.240 0.0001-0.0002 
B 0" 180-0.615 0.0003-0.0004 

0.525-0.790 0.0005-0.0004 
0.790-0.900 0"0004-0.0003 

C ~ 0.900-0" 955 0.0003-0.0002 
1.0.955-0.980 0.0002-0.0001 

* The fact that rz can be expressed in four different ways in As a consequence one can consider the  m a x i m u m  
A 1 a n d  q s u p p o r t s  t h e  a s s u m p t i o n  t h a t  A 1 = q~/4. error in q to be Jr 0.0005. I t  is h ighly  probable tha t  no 
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real equations in q would be missed by  rejecting coin- 
cidences between q-sums or q-differences which differ 
by  an  amount  exceeding 0.0004. In  the  examples given 
above, however, the value 0.0005 was chosen. 

In  order to get the above accuracy with a camera of 
the Debye-Scherrer type  the camera diameter  must  be 
large. Wi th  a diameter  of 19 cm. an error ofO.1 mm.  in 
line position will cause an error in q of 0.0005 for lines 
with a mean  deviat ion (20) of 90 °. 

I wish to t hank  Prof. G. H~gg for his constant  
interest  and  help during the preparat ion of this  
paper.  
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The novel type of Guinier camera described in this paper is characterized by a combination of 
several cameras in a compact unit using a single focusing monochromator and a single film, and by 
the disposition of the camera relative to the monochromator in such a manner that  a-doublet 
diffraction lines coincide for a 0 value of, say, 15 °. In this way an exceptionally high resolving 
power is obtained in a considerable range of glancing angles, centred about this value, which contains 
the most selective lines for analytical purposes. The line width in the respective cameras is discussed, 
and the conclusion is reached that  in the significant region 0 < 30 ° there is no appreciable difference 
between the outer and the middle cameras of the, unit. With a view to comparison purposes, the 
line shift for the outer cameras is also calculated; it appears to be of little consequence. Finally, 
short descriptions of a twofold and of a fourfold camera are given. 

Introduction 

In  1939 Guinier described a new type  of focusing 
powder camera in which a convergent X-ray  beam 
produced by  a curved crystal  monochromator  passes 
through the  specimen. Diffracted rays for any  glancing 
angle 0 converge to sharp diffraction lines on a film 
lying on the  circular cylinder which contains the focal 
line and  the sample (Fig. 1). As advantages  of the 
new method compared with common powder diffraction 
technique,  Guinier (1945, p. 147) has enumera ted  the 
low background in tens i ty  arising from the absence of 
white radiat ion,  the  good resolving power, and  the 
large specimen volume, yielding smooth diffraction 
lines. 

In  our opinion, Guinier in this  recapi tulat ion (duly 
completed with the disadvantages:  restricted 0-range; 
ra ther  difficult preparat ion of samples; exact  focusing 
only in one plane) has by  no means  exhausted the meri ts  
of his achievement.  In  fact, after about  a year  of 
experience with Guinier cameras we th ink  t ha t  they  
possess some unique features, to witness: 

(a) The except ional ly high resolving power in the 
0-range for which the Guinier camera is suited, i.e, 

0 < 30 °. The resolving power in this  range is essentially 
much  bet ter  t han  with a Debye-Scherrer camera of the 
same dispersion for two reasons: (1) The focusing pro- 

Focusing 
P monochromator ~ cryscal 

~0be 
/ focus 

Film 

o 
Focal line 

Fig. 1. Schematic p lan  of the  Guinier camera. F ,  tube  focus; 
OQ, film; S, specimen; O, focal line; P ,  focusing mono- 
chromator  c rys t a l  

per ty  el iminates to a large extent  the influence of the  
thickness of the specimen. (2) Pairs of diffraction lines 
corresponding to both wave-lengths of the o-doublet  
can be made to coincide for any  desired value of O, 


