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the Cr3+ions, which increases from NaCrSe, to RbCrSe,,
following the decreasing contrapolarizing action of the
ions in the series Na+—Rb+. '

Table 3. Observed and calculated interionic spacings
of the alkali selenochromites

(All values in A.)

NaCrSe, K,; CrSe, RbCrSe,
—

Spacing Obs. Cale. Obs. Calc. Obs. Cale.
Alk.-Se 292 2-89 3-27 324 — 340
Cr-Se 2:56 2:55 246 255 — 255
Cr—Cr within 370 — 344 — 343 —
Se—Se } one 3-70 3-82 3-44 382 343 3.82
Alk.—Alk.} layer 370 — 344 — 343 —

The mobility of the electrons of the selenium ions,
which increases with the polarization, is manifested
in the electric conductivity of the compounds. While
NaCrS, is still nearly- a non-conductor, the specific
resistance measured on samples under a pressure of
1200 kg.cm.~2 is 6-4 ohm-cm. for NaCrSe, and 0-2 ohm-
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cm. for RbCrSe,. The conductivity of RbCrSe, is thus
not much less than that of microcrystalline graphite.
In Table 3 the observed interionic spacings of the -
alkali selenochromites are compared with the values
calculated from the Goldschmidt ionic radii.
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Indexing Powder Photographs of Tetragonal, Hexagonal and
: Orthorhombic Crystals

By R. Hesse
Chemical Institute of the University, Uppsala, Sweden

(Recetved 8 March 1948)

A numerical method of indexing X-ray powder photographs without the use of single-crystal data
is described. The method leads to a fairfy systematic treatment of tetragonal and hexagonal photo-
graphs, and has also proved valuable in orthorhombic cases.

The indexing of powder photographs of tetragonal and
hexagonal materials, which cannot be obtained in
suitable single crystals, is most frequently carried out
by means of the graphical methods of Hull & Davey
(1921), Bjurstrém (1931), and of Bunn (1945, p. 133).
These and other related graphical methods are, how-
ever, very time-consuming and are liable to fail in cases
with a high proportion of missing reflexions. Some
crystallographers might prefer to solve the problem
numerically if practicable methods existed. The early
numerical methods of Runge (1917) and of Johnsen
& Toeplitz (1918), however, are mainly of theoretical
interest and will generally not work in practice.

In the following, an account is given of a numerical
method which has proved to be very successful in
several practical tests carried out in Uppsala. It allows
of a fairly systematic treatment of tetragonal and

hexagonal cases. It has also been successful in ortho
rhombic cases, although there the treatment will be
less systematic. Earlier investigators may have applied
similar methods to those of this paper, but a consistent
account seems to be lacking.

1. TETRAGONAL AND HEXAGONAL
(RHOMBOHEDRAL) SYSTEMS

1-1. General relations

In the tetragonal and hexagonal (rhombohedral)
systems the quadratic forms are

. A% (R34 k2 ]2

st =15 (" +)

) A2 (4(h2+K2+hk) I2
and Sln20=z (T +§) ’
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with well-known notations. We introduce the following
notations:

Tetragonal system Hexagonal system

A= A2/(4a?) A%/(3a2)
C = A2[(4c?) A2[(40%)
M= (R4 K?) (B2 + K2+ hk)

(‘tetragonal number’) (‘hexagonal number’)

and further ¢g=sin26.* All these quantities are positive.
We can then write for both the tetragonal and hexagonal

system g=AM+CP,

where for the tetragonal system M =0, 1, 2,4, 5, 8, etc.,
and for the hexagonal system M =0, 1, 3,4, 7,9, etec.

If a number of ¢ values are given, the problem will be
to solve the system of equations

Qz':MiA‘}‘l?C

with respect to 4, C, M, and 2, establishing the
simplest possible solutions.

Let us represent p=NA+ RC, where N and R
are integers, by a number pair (p)=(N, R), for which
the following calculation rules are defined (cf. the
calculation rules for complex numbers):

(@) (N,, R,)=(N,,R,), onlyif Ny=N,and R, =R,;

(b) ZkyN;, R,)=(Zk;N,, Zk;R;), where k; are in-
tegers.

If the representation is not unique, that is, if
p=N'A+RC=N"A+R"C, where N'+N", we still
write (N', R')%(N", R").

It is seen that if Zk;(p;) = (0, 0), then

3k;N,=0 and Zk,R;=0.
Now let g be represented by the number pair
(@)=(M, ).

In the following we consider only lines with fairly small
q values, i.e. lines with fairly small values of M and 2.
It is also assumed that A4 : C is not a ratio of small or
relatively small integers. Then the representation
()= (M, 1?)isunique. (Forif g= M, A +13C = M,A +13C,
then 4: C=(3—13): (M,—M,).)

(t=1, 2, 3, ete., g; given)

n
Also if Sk;q,=0 (k;=small positive or ‘negative
n
integers; n small, generally <4), then X k;(g;)=(0, 0).

n n
(If this is not valid, then 4 : O=(—Xk,12) : (Xk; M),
which is in conflict with the assumption.) If then

n
relations of the type Y k,q;=0 have been found by the
method explained in § 1-3, M; and If can be calculated
from the corresponding equations

(Sk: M, Ski2)=(0, 0).

* If one prefers a function which is independent of A, one
may replace ¢ in all the following expressions by
Q=4 (sin® 6)/A2.
The meaning of the constants 4 and C will then change to
A=1Ja? (tetragonal system), 4 =4/(3a?% (hexagonal system),
and C=1/c2.
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Linear relation between two q values

Of special interest are equations of the type
kygi="kaq,
and of the type
k1qy+kage+ kg3 =0.

We first consider the equation k;q, =k,q,, where k;
and k, possess no common factor and where k, and %,
are not both squares.

Then (ky My, k%)= (kyM,, kyl3), from which
M,:ky=M,: k, and k,l3=Fk,l3.

‘From this it follows that ;=I,=0. For assume
1,0 which implies 7,#0, then I, must contain all the
prime factors of k,, and !, must contain all the prime
factors of k,. If then k;, say, is not a square, it must
contain a prime factor p to an odd power. In this case
I, must contain the factor p, which will then enter to
an even power in the right-hand member of &, I3=1£,13,
while the left-hand member contains p to an odd power.
Consequently, the assumption /, 40 leads to a paradox.

We thus find that (¢;) = (M, 0) and (¢g,) = (M, 0) and
further M, : ky=M,: k,=m,, (m;;=an integer =1 be-
cause k, and k, have no common factor).

5 1 ¢

Hence 4 = ST N where ¢, and k, are known.

If m;,> 1 one can often find m,, or factors in m,, by
the combination of several equations. As an example,
we consider the following equations:

(1) ¢,=3q,, (2) q1=4g;.

Then

(1) gives (¢;)=(3M,, 0) and (2) gives (¢,)=(4M 4, 413),
where evidently l;=0. (1) also gives 4 :;n}—(ﬁ' Here

12

my,=M,. But as (3M,, 0)=(4M,, 0), it follows that
3M,=3m,,=4M,, i.e. m;, must contain the factor 4.
As a consequence 4 =g¢,/(12m), where m=an integer,
possibly 1.

The ratio k,:k,=M,: M, generally determines
whether the system is tetragonal or hexagonal. The
occurrence of the simplest ratios in these two systems
is tabulated in Table 1.

Table 1. Occurrence of ratio M,: M, (expressed in
numbers < 10) without a common factor in tetragonal
(T) and hexagonal (H) systems. The ratios denoted by O
do mot occur

2 3 4 5 6 7 8 9
1 T H TH T 0 H T TH
2 0 — T — 0 — T
3 H 0 — H 0 —
4 T —_ H —_ TH
5 0 0 T T
6 0 — —
7 0 H
8 T

Linear relation between three q values
The equation k, ¢, + kyqs + k39, =0 gives
(k1M1+k2Mz+k3M3: k1l%+k2l§+k3l§) =(0, 0).
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The equation k, 12+ k&,12+ k312=0 has very few solu-
tions which are small numbers. The equation

24 2B —12=0

for example, has for 0=/, <10 only solutions of the
form I, =1,=m, l;=2n. Solutions to equations of this
kind are given in Table 2 for

|1]<10 and |k |<6, |ky|<3, |ky|<3.

The solution [, =1,=1,=0 is common to all equations
of this type. This solution implies that

09 =M, : My: M.

Hence this solution is excluded except when ¢, ¢, and
g5 stand in such a rational proportion. If

00 gs=ky Ky kg,
where k;=integers without a common factor and one
of the k; is non-quadratic, then 4 =¢,/(mk,), where m
is an integer.
By combining several equations k, 12+ k 12+ k,12=0
4

with equations k;q;=k;q; or X k;q;=0 it is possible to
calculate I; for a number of lines (see § 1-4, example 2).
In this way one obtains

_A =(13¢1 — 1395) /M2 = (1391 — 1¢5) (115 = (1391 — 13 qs) /71
and so on, where n,,, 7,5, 7,4 are integers. If /; and I;
have the common factor &, then n;; contains the factor
k2. (In these expressions it is assumed that

He—He+0)
By combining several equations Yk, M,=0 with,

4
possibly, equations k; M ;=k; M, or 3 k; M ;=0, one also
obtains possible solutions in M. In this way one can
obtain possible values for m ;=M I3 — M,I2.

1-2. Determination of one constant when the
other is known
The treatment of this problem does not imply any new
features, but is briefly related here for the sake of com-
pleteness.

If (¢)=(M, %) then (¢—AM)=(0, I2). Thus, if ¢ is
a reflexion with unknown indices, one of the numbers
g—M,A(=0; M;=0, 1, 2, 4, 5, etc. in the tetragonal
system and =0, 1, 3, etc. in the hexagonal system) will
equal CI2,

If A4 is given and one knows whether the system is
tetragonal or hexagonal, one selects the four or five
lowest ¢ values for which (¢)# (M, 0) and forms
g;—AM;>0, where M; are either tetragonal or hexa-
gonal numbers. If the system is unknown, both tetra-
gonal and hexagonal numbers are given to M;. If
among the reflexions in question (g, <¢,<¢3<g,<gs)
two, for instance ¢, and g3, possess the same [ index,
then

g~ M A=q,—M;A=k,, where k,=CI.

INDEXING POWDER PHOTOGRAPHS

Table 2. Solutions 0 <1, <10 of the equation
k 3+ k5 +Rg13=0, for |k, | <6, [ky|<3, |ks|<3
(Equation % 12+ k,13 +¥%,12=0 is identical with
— ey B ke 13— kg2 =0.)
General solution: I, =1,=[;=0.

Type solutions: (@) ky+k,+ks=0; L=1l=I,.
(b) k= —k;; l;=1;, l,=0.
(¢) ky=—4k;; 2l =1;, 1,=0.
Coefficients Type Special solutions
p A \ solutions ¢ A ~
ky kqy kg (see above) A 1y I
1 -1 -1 b,b {g 3 i
2 | b ﬁ” ’7"" 3n
2 -1 -1 a {5 4 :
2 2 -1 — n n 2n
2 -2 -1 b FA o
n n 2n
3 1 -1 b { 4 4 ;
3 -2 —1 a 3 1 5
3 2 2 b {2 : >
3 -3 1 b n 2n 3n
3 -3 2 b {3 > s
4 1 -1 b, c 2 3 5
4 -1 -1 6 ¢ {g : g
4 2 -1 c 1 4 6
4 -2 1 — n 2n 2n
4 -2 -1 c 3n 4n 2n
4 3 -1 c n 2n in
4 -3 -1 a,c 7 8 2
n 2n 2n
4 3 2 — { : 5
4 8 -3 b o P
n 2n 3n
5 1 -1 b 3 2 7
4 1 9
n n 2n
5 -1 -1 — {n 2n n
5 2 -2 b 4 3 7
2n 3n n
5 -2 -2 - 127» n 3n
Jn n 2n
5 3 -2 — n 3n 4n
I5 1 8
5 -3 -2 a 3 7
5 3 —3 b g = an
6 1 -1 b {2 5 >
n n 2n
6 -2 -1 - {3 5 2
T TN
n 2n 3n
6 3 —2 — { . : .

As k, usually occurs in two or more places among
g;—M;A, it is possible to find k,. Among the numbers
q;—M; Afori=2, 4 or 5 (in the given example), one then
looks for 4k,, 9k,, etc., and possibly also for k,/4,
9k, /4, ete. or k,/9, 4k,/9, etc. In the case where all the
first reflexions have different indices, !, one of the
numbers ¢, —M; A will equal k,. One then tests these
numbers in turn in the same way as above.
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If C is given, 4 can be found in an analogous way.
A larger number of lines ought to be considered in this
case.

1-3. Formation of the expressions Zk;q;=0
If the smallest ¢ values observed are

1<92<93<94<q5--- <Qqn>
one forms among these all the sums ¢;+¢;< R (R, for
example, =gy, 1<j), according to the scheme given
below:

q 92 ds ' g5 9e
a | 2w L

9z ¢1+9,(3) 2g,
qs @ +q3(1) ¢2+9s 25

9s—0(4) 3G—0(3) %~ %
9%—92 96— 92

|___ 95—9s3 9e—4s
[

4 G+q 9at+9a(2) s+ 24,

s G+4(2) G+ B6+s% Lt 2% L
)| at+e Gt BFs6 T

@ 6t Gta -

In this scheme one looks for sums or single ¢ values
which are equal within narrow limits of error. (One
notices that values of approximately the same magni-
tude occur near lines which are parallel to the dotted
line in the scheme.) The limits of error are discussed in
§ 3; in all cases hitherto treated we have put ¢,+¢;=4;
if ¢;+q¢;=¢,+A, where | A |£0-0005. If in this way
one has found that the numbers indicated by (1) in the
scheme are equal, one gets the equation ¢, +¢;=g¢. In
the same way the numbers indicated by (2) give
¢, +45=9,+3s. Consequently, one obtainsequations of
the types ¢;+¢;=¢, and ¢;+¢;=¢;+¢,. From these
equations one obtains separate expressions in 1> and M
from which the indices can be calculated. It is con-
venient first to. carry out eliminations within the

3
system so that equations of the types Yk;q,=0 (one
k,;> 1) or k;q,=Fk;q; are obtained.

If the sums do not give a sufficient number of
equations, one can also form differences ¢;—¢;22¢,.
It is of no use to look for equalities among the differ-
ences only. They repeat relations obtained earlier from
the sums; for if ¢;—¢;=¢;—¢,,» then ¢;+¢,=¢,+¢;.
Equalities between differences and sums, however, give
the desired equations. The equalities (3) in the scheme
give g5 =2q, +¢,, whereas (4) give ¢,=3¢; . In forming
the equations one excludes equations which are not
independent. It is easily seen that one of the equations
(2), (3), (4) is superfluous.

Another way of directly obtaining equations of the

3

types Yk;q;=0 (one k;>1) and k;q,=k,q; without
eliminations is to form sums (and differences if neces-
sary) of the numbers ¢;, 2¢;, 425 295, 93, 243 and so on.
These numbers are arranged in increasing order and the
summations are carried out in the same way as in the
scheme above. (An example of this procedure is given
in § 1-5, example 2.)
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1-4. Performance of the indexing

Tt is supposed that the g values of all lines with small
angles of deviation have been determined with the
greatest possible accuracy (see § 3). If one has found
that the system is non-cubic, equations are formed
according to § 1-3, after which solutions in M and I* are
determined as in § 1-1. If only A or mA is obtained
in this way, C is determined according to § 1-2. The
method of § 12 can also be used for lines of higher
angles as a check on the values of 4 and C already
obtained. If 4 : C'is equal or nearly equal to a quotient
between small integers, certain equations cannot be
treated by representation by number pairs. In this
case one has to look for solutions of each equation
separately; this leads to several alternatives.

Finally, one can try to determine one constant by
the method used for the orthorhombic case (see § 2).

1-5. Applications

The above method of indexing powder photographs of
tetragonal and hexagonal crystals has been successfully
tried on several cases where the author did not know
anything about symmetry or dimensions beforehand.
One such case was the second of the two examples
given below, both of which have been taken from
investigations by Kiessling (1947).

Example 1. W,B; Cr Ka, radiation
The nine lowest sin2 values are:

q,=0-0847, q,=0-2698, ¢,=0-4025,
q,=0-1694, q;=0-3179, gy =0-4229,
q;=0-2334, gs=0-3384, go=0-5724.
Sums g, +¢; < g, are formed according to § 1-3:
‘A qa qs 9
@, 0-0847 0-1694(1)
¢, 0-1694(1) | 0-2541 0-3388(3) _
g, 0-2334 0-3181(2)  0-4028 0-4668 |
g4 0-2698 0-3545 0-4392 0-5032  0-5396
g5 0-3179(2) | 0-4026(4) 04873 0-5513
s 0-3384(3) | 0-4231(5) 0-5078 0-5718
¢, 0-4025(4) | 04872 0-5719(6)
g5 0-4229(5) | 0-5076
g 0-5724(6)

The following independent equations are obtained:

(1) 2¢,=¢,, (3) 2¢,=gs, (8) ¢1+96=9s,

(2) ¢, +93=0 @) ¢1+9%=0 (6) ¢e+q:=00,
which give

(7) g5=4q,, 9) 95=5¢,,

(8) ¢:=95+2q;, (10) gy=g5+4q,.
From (1), (2), (7), (8), (9) and (10) one obtains (g,), (¢5),
(g6) (q7), (gs) and (g,) directly expressed in M, 12, M,
and 2.

The equations (1), (3) and (9) each show that the
system is tetragonal, and that, among others, /;=0.
Hence, 4=0-0847/M,.
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. M3<3M, because ¢;<3q,. Moreover, M,+2M,,
otherwise equation (2) gives M;=3M, which is im-
possible in the tetragonal system. In the same way one
obtains My M,, M,/2, and 5M,/2. We first try M, <2
according to the method in § 1-2. In this case the above
gives My=0and Cl$=0-2334. Itisthen only necessary
to form q,—AM; as the rest of the lines are already
expressed in M, and 2.

For M,;=1, A;=0-0847:

q,=0-2698, ¢,—A,=0-1851, ¢,~24,=0-1005.
Neither of these numbers is related in a simple way to
CL.

For M,=2, A,=24,:

qy—A,=02275, ¢q,—54,=0-0581=ClZ/4,

whence M, =5 and I§=41}. Forl,=1, which givesl;=2,
all lines will be indexed according to equations (1), (2),
(7), (8), (9) and (10) in the following way:

(1)=(2,0), (9)=(5, 1), (77)=(4, 4),

(¢2)=(4, 0), (25)=(2, 4), (gs)=(10, 0),

(45)=(0, 4), (46)=(8,0), (99)=(8, 4).
Ezxample 2.  d-phase in the system Mo-B; Cr Ko,

radiation
The first eleven sin?6 values are:
¢,=0-0732, ¢,=0-2502, ¢,=0-4361, ¢,,=0-6165,
¢,=0-1406, ¢;=0-2910, ¢,=0-5050, g¢;,=0-6561,
gs=0-1771, g¢=0-3595, ¢,=0-5441.

Here the sums <gq of the numbers ¢,, ¢,, 2¢;, g,
44, 295, q5, 2¢5 and ¢, are formed:

aQ 92 2q, g3 9

¢, 0-0732 0-1464

g, 0-1406 0-2138 0-2812

2q, 0-1464 0-2196 0-2870 0-2928

qs 0-1771 0-2503(1) 0-3177 0-3235 0-3542

g4 0-2502(1) | 0-3234 0-3908 0-3966 0-4273 0-5004(3)
2¢, 0-2812 0-3544.(2) 0-4218 0-4276 0-4583

qs 0:2910 0-3642 0-4316 0-4374 0-4681
2q, 0-3542(2) | 0-4271 0:4948 0-5006

qs 0-:3595 0-4327 0-5001(3) 0-5059

The following independent equations are obtained:
(1) 94=93—9:=0, (2) 2¢3—2¢,~¢,=0,
(3) 2¢,—gs—¢.=0.

From Table 2 we find that these equations have the
following solutions in / in common:

(@) I, =l,=I3=1,=Is=0, which requires

01 9293 qa =My My: My: My: M.
No acceptable ratios of this kind exist, whence this
solution is excluded.

(0) 1,=0, l,=l3=1,=I;, whence AM,=0-0732. Ac-
cording to (2) M, must be divisible by 2. A study of
possible M, values in (1), (2) and (3) excludes M, =2.
Hence, M, must be=4, 8, 10, etc. Though the low-angle
lines can thus be indexed, contradictions occur for lines

INDEXING POWDER PHOTOGRAPHS

with larger angles. Hence, the only remaining possi-
bility will be:

(¢) =4, l,=1, I;=3, l,=5, l;=7. Here M, can
be=0,4,8,10,etc. If My =0, then My=M,=M,=M,.
Further ¢, =16C=(g;—¢,)/3=0:0729;, ¢,,/9=0-0729.
We use the accurate value C'=gq,;,/144 and calculate
q;—Cl} for i=6, 7, 8, etc. (¢s=64C). In this way
the system is found to be tetragonal and the indexing
of all lines is possible. The value of 4 is found to be
0-1360. A great number of reflexions are missing, but
practically all of them correspond to the absences
required by the space group Dij-I4/amd. The large
percentage of absences and the high axial ratio
(c/a=5-465) would have rendered an indexing of this
photograph by means of graphical methods very diffi-
cult.

2. ORTHORHOMBIC SYSTEM
2-1. General relations

The indexing of powder photographs of orthorhombic
crystals requires a great number of sin? 6 values.

The quadratic form of the orthorhombic system is

¢s=A:h};+ Ah3;+ Agh3;, where g,=sin%6,.

If two of the constants (4, and 4,) are known, the
third constant (4;) can be determined immediately
according to the method given in § 1-2.

If only one of the constants (e.g. 4,) is known, the
problem is brought back to the indexing of

ry=Ayh3+ Agh};.
This indexing is carried out in the following way.
It 9s, = A, + Ayh5+ Agh3;
9i,= A4+ A,h3;+ Agh3;

...........................

Qin=A.1n2+A2hgi+A3h§i’
then

9, —A4,=q,,—44,= e =qy,— Ayn®=A,h3;+ A;h3;.

Consequently, one forms all numbers of the type
¢:— A, h*> 0 for a great number of ¢ values. Among the
numbers g,—4,h2>0, where A also can equal 0, all
numbers occurring twice or several times are picked
out. These numbers are denoted by r,, 75, 73, etc. Most
of the numbers r; are usually of the form A4,h2,+ Agh32;.
Index combinations which are not to be found among
the given ¢ values may occur here.

If r;=A,h%;+ Aghl;, then r,; is represented by the
number pair (r,)=(k%;, 2%,). Under the same assump-
tions as for the tetragonal and hexagonal systems we
obtain that if r; +7;, =7, then

(R3iy» h:) + (RS, , h3:,) = (R, B3,

Hence (we assume & < 10):

(a) If hf and A3+ 25, then one (r;) is equal to (A, 0)
and the other to (0, A%,).

(b) If h3,=25 and h3 25, then one (r;) is equal to
(RZ;, 0), where h%,=9, 16 or 25.

(¢) If hi,=h3,=25, then one (r,) is equal to (25, 0),
(16, 9) or (16, 16).
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(If in the last case (r;,) = (16, 16), thenr, :7,=16:25.)
We thus determine 4, and 45 with the aid of equations
of the type r, +7,,=r;. After finding 4,, 4, is deter-
mined according to § 1-2. In doing this one must (as
when treating the equation r; +7,,=r,) pay regard to
the fact that not all #’s are always of the form

A r=A,hi+ A h3.

The determination of one or several of the constants
4 ab initio is carried out in the following way:

If ¢, <qy<q3< ... <g¢n (say that » is about 40) all
expressions ¢;,+¢;=¢, (s<n and i, say, =10) are
formed according to § 1-3. It is extremely probable
that g,’s of the type ¢ = ARh? will occur in a great number
of these equations. In all cases hitherto treated the
g; value which has been most frequent in such equations
has been of this type. The expressions ¢,+¢;=g¢, are
formed using a narrow margin for the errors of measure-
ment. .

One also forms differences of the type 0 < (g, —¢;) <q; -
If A <q,, numbers of the type 4,(h%,—h%;), Ay(h3,—h3)),
A,y (h3,—h3;) will be found among the most frequent
differences. The formation of differences > g, is generally
unnecessary, as also the formation of differences be-
tween all given ¢ values. It is convenient to plot the
differences in a diagram (see the example below).

If q¢ is one of the numbers which is most frequent as
term g¢; or ¢; in the expressions g;+¢;=¢;, one tests if
g%(n®—12)/m? (where m, n and [ are integers) is repre-
sented among the most frequent differences. If this is
the case, one puts q?/m?= A4, . With the value of 4, thus
obtained one tries to bring back the problem to the
indexing of A,h% + A,h3; in the manner given before.
If both 4, and 4, are obtained in this way, 4 is deter-
mined according to § 1-2.

If it is impossible to find any relation among the most
frequent sums and differences one tests 4, =¢?, 4, =¢}/4,
A4,=4¢?/9 and so on.

2-2. Application
Several powder photographs of orthorhombic crystals,
which were unknown to the author, have been indexed
in this way. One typical example is given here.
Example 3. KNO,, Cr Ka, radiation
The forty lowest observed sin?6 values are:

gy =0-0923, ¢,;=0-2264, g, =0-3462, g5 =0-4663,
gs =0-0943, ¢,,=0-2339, ¢,,=0-3481, g;,=0-4963,
g5 =0-1271, g3=0-2411, g =0-3513, g53=0-5239,
gs =0-1392, ¢,,=02496, ¢,,=0-3689, g;,=0-5427,
g5 =0-1427, q,;=0-2678, qp5=0-3766, g55=0-5551,
gs =0-1720, 1s=0-2731, qpq=0-4177, g45=0-5624,
g, =0-1789, ¢,,=0-2818, g,,=04223, g5, =0-5693,
g5 =0-1853, ¢;3=0-3060, y3=04287, ¢33=0-5748,
Go =0-1877, qo=0-3122, gpu=04500, g;=0-6151,
G10=0-1898, py=0-3263, g;0=0-4600, ¢4o=0-6699.
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We form all expressions of the form ¢;,+¢;=g;, for
1=<10, s<40:

@1+ 90=%7 92+ 917=925, 94+ 95 =175 97 +925=035>

@+ q12=920, 93T =G1s> GT =924, 95 +925=936>
91 +920=G34> 93+9s =G19> 95+ T12=025> 9o +T13=Gos>
9o+qs =19 3+91a=92s> 9697 =923> 10+ T18=%52-
92+ 97 =q165 93+ 920325 G2t T10= 24>

Q2+ =175 93+93a=%40> 97 +914=0os>

The frequencies of g, , g, ... ¢y, in these expressions
are

0:3), ¢.(4), ¢3(5), (), ¢5(3),

q:(6), 45(2); q9(2), q10(3).

The numbers ¢, (6), g;(5) and ¢,(4) are evidently of
special interest.

(1),

1
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B el I TI
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0-0800 0-0850 0-0900 0-0950 0100

Fig. 1. Numerical interpretation of orthorhombic powder
photograph.

In Fig. 1 the occurrence of values g;—q; (<g,) for
8§<20 is indicated by vertical lines on the abscissa. 1f
two values coincide, the line is given double the height.
The distribution of these values is further shown by
the areas enclosed by dotted lines, the height of which
is proportional to ¢he number of differences g,—g;
falling within an interval of 5 x 10~ on the abscissa.

From the diagram we see that no less than five
differences are situated in the immediate vicinity of
@,/4=0-0447. The numbers g, and g3 do not show any
simple relations with the differences. We put ¢,/4=4,
and form ¢;—A4,k?>0 for all given ¢ values. (If no
result had been obtained in this way, we would have
tested 4,=gq,/16* or possibly 4,=g¢,/36.)

From the numbers ¢; — 4, k2> 0 (where % also can be
zero) we obtain the following r values (the numerical

* When testing A;,=g,/16 it is necessary to form only the
new numbers g;—4,, ¢;—94,, ¢;—254,, etc. The rest of the
numbers have already been formed for 4, =g,/4.
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values given being means of the different numbers
giving practically the same r value):

ry =00475=¢,— 4, =g —44,=¢—94,,
ry =0:0942=q, =¢, —4,=q,4—44,=¢5,—94,%,
rg =01272=¢q; =qs —4,=q15—44,,

ry =0-1404 =qs —4,; =¢s—94,,
ry =0-1428=¢, =q, —4,,

re =0-1670 =qy —4A4,=¢5;,—94,,
T, =0-1722=¢4 =(p3—44;=¢33—94,,

rg =0:1895=qy9=qy5—4,,

ry =0-2497=gq,, =g —44,,
710=02676=¢;5=¢,5— 4, =q4—94,,
711 =02815=¢1,=¢p— A, =¢30—44,,
712=0-3063 =¢,3=¢p3— 4,

713=0-3764 =g, =¢s5—44,,
r14=0-3838 =gos— A1 =gy —44,,
715=04220=gy,=¢5 — 4,

r15=05242 =033 =¢3, — 4.

All equations of the type r; +r,=r; are formed
(A £0-0005): ’
(1) rg+ry=ry,

() ratry=ry, (5) rytra=ry,

(2) ratrg=1r13, (4) T+re=1y5.

We consider the equations (1) and (2):

Both (r,4) and (r5) cannot be (25, 25). Then according
to (1) and (2) one of the number pairs (r,), (7,) or (7,)
must be equal to (h%;, 0) (or to (0, k3;), which is the
same). Further, r;:7y=9:16 and, consequently,
16h%,=9h%, and 16h%,=9k2,. We assume (r,)=(9, 0)
requiring (ry) = (16, 0), whence, according to (1) and (2),
(rg) = (0, k). Then

A,=7,/16=0-0156 and Az=r,/h3;=0-1272/h%,.

According to § 1-2 we form r,— A,h2>0fors=1,2, 5,
6,7 and 8, from which 43=7;/4=0-0318 and (r,) = (1, 1),
(rs)=(4, 1), (r3)=(0, 4), (r5)=(1, 4), (r;)=(9, 1) and
(rg) =(4, 4). It is not possible to obtain the indices of ¢
in this connexion.

From (1), (2), (4) and (3) we now obtain directly

(7'10) = (9’ 4)’ (7'13) = (16: 4)) (1.15) = (25: 1)

and (rn)=(16, 1).

Equation (5), on the other hand, leads to a paradox.
The constants obtained do not permit the indexing of
72 and ry,4, but it is too much to assume that all r, are
of the form A4,A%,+ A4h%;.

We further find that (r¢) = (1, 16).

* The fact that r, can be expressed in four different ways in
A, and g supports the assumption that 4, =¢,/4.

INDEXING POWDER PHOTOGRAPHS

With the aid of the indices of r; (except 7, 7;, and
14) and the connexions between ¢, and r; (see above) we
obtain directly the indices of all lines except ¢,, ¢;3,
G215 9325 9oa> 926> 956 30d ggq. It is, however, possible to
index these lines with the constants now obtained. In
this way the whole photograph has been indexed.

Further remarks. Fig.1 shows accumulations of num-
bers round the values 4,=0-0156, (4 —1)4,=0-0468,
44,=0-0624 and (9—4)4,=0-0780. Moreover, num-
ber g5, which occurs in five expressions of the type
¢;+49;=q,, is equal to 44;. (g,, which occurs four
times in the corresponding expression, is equal to
44,+4,.)

A calculation of A5 according to § 1-2 and with the
assumptions 4, =g,/n? and 4,=¢s/m?, would have led
to a result more rapidly than the method described
above, where q;— A,h? was formed. One would then
have to test the alternatives 4,=g¢,/16, 4,=¢,/16 and
A,=q,/16, A,=gy/9. The first alternative makes
possible the indexing of all lines with the indices
(2hy;, 2hy;, hy;) which gives 4,=g¢,/4 and 4,=g¢,/4.

3. ACCURACY OF MEASUREMENTS

An essential condition for the success of the indexing
method here described is a high accuracy of the
observed ¢ values. If the ¢’s or sums of ¢’s which are to
be equated are not sufficiently well known, the risk of
obtaining ‘false equations’ is obvious, especially if the
cell dimensions are large. Only a single false equation
has occurred in all the cases investigated by the
author, mainly owing to the high accuracy of the
experimental material. False equations will probably
be easy to rule out by internal inconsistency.

The author used exclusively focusing cameras of the
Seemann-Bohlin type, modified by Phragmén (West-
gren, 1931) and later by Higg. Some geometrical
constants of these cameras are given by Higg &
Regnstréom (1944). The measurement of the film was
carried out according to the method described by Higg
(1947), in which an automatic correction for film
shrinkage is obtained. With suitable preparations the
error of a single measurement will never exceed
+0-1 mm. and in most cases will not exceed + 0-07 mm.
The effect of an error of 0-1 mm. on the value of ¢
(=sin?6) in different ranges of the three cameras (A, B
and C) used is given in Table 3.

Table 3. Error in q (=sin?0) caused by an error in
line position of 0-1 mm.

Camera q Error in ¢
A 0-065-0-240 0-0001-0-0002
B 0-180-0-615 0-0003-0-0004
f 0-525-0:790 0-0005-0-0004
C 0-790-0-900 0-0004-0-0003
0-900-0-956 0-0003-0-0002
0-955-0-980 0:0002—0-0001

As a consequence one can consider the maximum
error in ¢ to be +0-0005. It is highly probable that no
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real equations in ¢ would be missed by rejecting coin-
cidences between g-sums or g-differences which differ
by an amount exceeding 0-0004. In the examples given
above, however, the value 0-0005 was chosen.

In order to get the above accuracy with a camera of
the Debye-Scherrer type the camera diameter must be
large. With a diameter of 19 cm. an error of 0-1 mm. in
line position will cause an error in g of 0-0005 for lines
with a mean deviation (26) of 90°.

I wish to thank Prof. G. Hégg for his constant
interest and help during the preparation of this

paper.
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Multiple Guinier Cameras

By P. M. pE WoLFF
Technisch Physische Dienst T.N.O. en T.H., Delft, Holland

(Received 12 March 1948 and in revised form 2 June 1948)

The novel type of Guinier camera described in this paper is characterized by a combination of
several cameras in a compact unit using a single focusing monochromator and a single film, and by
the disposition of the camera relative to the monochromator in such a manner that a-doublet
diffraction lines coincide for a 6 value of, say, 15°. In this way an exceptionally high resolving
power is obtained in & considerable range of glancing angles, centred about this value, which contains
the most selective lines for analytical purposes. The line width in the respective cameras is discussed,
and the conclusion is reached that in the significant region 6 < 30° there is no appreciable difference
between the outer and the middle cameras of the unit. With a view to comparison purposes, the
line shift for the outer cameras is also calculated; it appears to be of little consequence. Finally,
short descriptions of a twofold and of & fourfold camera are given.

Introduction

In 1939 Guinier described a new type of focusing
powder camera in which a convergent X.ray beam
produced by a curved crystal monochromator passes
through the specimen. Diffracted rays for any glancing
angle 6 converge to sharp diffraction lines on a film
lying on the circular cylinder which contains the focal
line and the sample (Fig. 1). As advantages of the
new method compared with common powder diffraction
technique, Guinier (1945, p. 147) has enumerated the
low background intensity arising from the absence of
white radiation, the good resolving power, and the
large specimen volume, yielding smooth diffraction
lines.

In our opinion, Guinier in this recapitulation (duly
completed with the disadvantages: restricted 0-range;
ratber difficult preparation of samples; exact focusing
only in one plane) has by no means exhausted the merits
of his achievement. In fact, after about a year of
experience with Guinier cameras we think that they
possess some unique features, to witness:

(@) The exceptionally high resolving power in the
-range for which the Guinier camera is suited, i.e.

0 < 30°. The resolving power in this range is essentially
much better than with a Debye-Scherrer camera of the
same dispersion for two reasons: (1) The focusing pro-

Focusing
P monochromator
crystal

0
Focal line

Fig. 1. Schematic plan of the Guinier camera. F, tube focus;
0Q, film; S, specimen; O, focal line; P, focusing mono-
chromator crystal.

perty eliminates to a large extent the influence of the
thickness of the specimen. (2) Pairs of diffraction lines
corresponding to both wave-lengths of the a-doublet
can be made to coincide for any desired value of 6,



